Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Abstract The Cambrian Explosion saw the widespread development of mineralized skeletons. At this time, nearly every major animal phylum independently evolved strategies to build skeletons through either agglutination or biomineralization. Although most organisms settled on a single strategy,SalterellaBillings, 1865 employed both strategies by secreting a biocalcitic exterior shell that is lined with layers of agglutinated sediments surrounding a central hollow tube. The slightly older fossil,VolborthellaSchmidt, 1888, shares a similar construction with agglutinated grains encompassing a central tube but lacks a biomineralized exterior shell. Together these fossils have been grouped in the phylum Agmata Yochelson, 1977, although no phylogenetic relationship has been suggested to link them with the broader metazoan tree, which limits their contribution to our understanding of the evolution of shells in early animals. To understand their ecology and place them in a phylogenetic context, we investigatedSalterellaandVolborthellafossils from the Wood Canyon and Harkless formations of Nevada, USA, the Illtyd Formation of Yukon, Canada, and the Shady Formation of Virginia, USA. Thin-section petrography, acid maceration, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray tomographic microscopy were used to provide new insights into these enigmatic faunas. First, morphological similarities in the aperture divergence angle and ratio of central tube diameter to agglutinated layer thickness suggestSalterellaandVolborthellaare related. Second, both fossils exhibit agglutinated grain compositions that are distinctive from their surrounding environments and demonstrate selectivity on the part of their producers. Finally, the calcitic shell composition and simple layers of blocky prismatic shell microstructure inSalterellasuggest a possible cnidarian affinity. Together these data point to these organisms being sessile, semi-infaunal filter or deposit feeders and an early experimentation in cnidarian biomineralization chronicling a hypothesized transition from an organic sheath inVolborthellato a biomineralized shell inSalterella.more » « lessFree, publicly-accessible full text available October 13, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Fortunian archaeocyath sponges acquired biomineralization in the beginning of the Cambrian explosionArchaeocyaths are biocalcified sponges largely restricted to the early Cambrian Period. Their perforated cup-shaped body facilitated filter feeding. Many of them were clonal modular animals that formed the earliest metazoan skeletal reefs. In Siberia, archaeocyaths extend from late Age 2 to Age 4 of the early Cambrian, representing an ∼15 m.y. range (ca. 525−510 Ma). Elsewhere, archaeocyaths emerged later than in Siberia and, in places, survived to the middle-late Cambrian. The existing fossil record thus indicates an out-of-Siberia scenario and delayed biomineralization in archaeocyaths relative to many other animals, which acquired biomineralization in the Fortunian Age of the early Cambrian. Here we report two microscopic archaeocyath species—Primocyathus uniseriatus Wang and Xiao, gen. et sp. nov. and Sinocyathus biseriatus Wang and Xiao, gen. et sp. nov.—from the Fortunian Kuanchuanpu Formation (ca. 533 Ma) in South China. Preserved as phosphatized internal molds, they are interpreted to have had a biomineralized, two-walled, perforated, cup-shaped skeleton. They were likely filter feeders, but their solitary habit and millimetric body size indicate that they were unlikely reef framework builders. They substantially extend the stratigraphic range of archaeocyaths, challenge the out-of-Siberia hypothesis, support archaeocyath biomineralization in the beginning of the Cambrian explosion, and imply a Precambrian divergence of sponge classes.more » « lessFree, publicly-accessible full text available April 4, 2026
-
Abstract Silicified microfossils are reported from nine stratigraphic sections of the Ediacaran Doushantuo Formation deposited in shelf margin, slope, and basin environments in Hunan Province of South China. These microfossils include sphaeromorphic and acanthomorphic acritarchs (15 genera and 29 species, including three new acanthomorph species,Bullatosphaera?colliformisn. sp.,Eotylotopalla inflatan. sp., andVerrucosphaera?undulatan. sp.), multicellular algae, tubular microfossils, and other problematic forms, representing major fossil groups similar to those from the Doushantuo Formation in more proximal facies (e.g., inner shelf and shelf lagoon). A database of the abundance and occurrences of Doushantuo acanthomorphs is assembled and analyzed using quantitative and data-visualization methods (e.g., rarefaction analysis, non-parametric multidimensional scaling, and network analysis). The results show that, at the genus and species levels, taxonomic richness of Doushantuo acanthomorphs exhibits considerable variation among facies, but this variation is largely due to sampling and taphonomic biases. The results also show that numerous acanthomorph taxa have broad facies distribution, affirming their biostratigraphic value. The analysis confirms that acanthomorphs in the Weng'an biota of shelf margin facies are composed of a mixture of Member II and Member III assemblages of shelf-lagoon facies in the Yangtze Gorges area. The study shows the biostratigraphic potential of acanthomorphs in the establishment of regional biozones using the first appearance datum of widely distributed taxa, highlighting the importance of continuing exploration of under-sampled Doushantuo sections in slope and basinal facies. UUID:http://zoobank.org/6fc92858-4054-4117-8043-1f06cfe77155more » « less
-
The snowball Earth hypothesis predicts that continental chemical weathering diminished substantially during, but rebounded strongly after, the Marinoan ice age some 635 Mya. Defrosting the planet would result in a plume of fresh glacial meltwater with a different chemical composition from underlying hypersaline seawater, generating both vertical and lateral salinity gradients. Here, we test the plumeworld hypothesis using lithium isotope compositions in the Ediacaran Doushantuo cap dolostone that accumulated in the aftermath of the Marinoan snowball Earth along a proximal–distal (nearshore–offshore) transect in South China. Our data show an overall decreasing δ7Li trend with distance from the shoreline, consistent with the variable mixing of a meltwater plume with high δ7Li (due to incongruent silicate weathering on the continent) and hypersaline seawater with low δ7Li (due to synglacial distillation). The evolution of low δ7Li of synglacial seawater, as opposed to the modern oceans with high δ7Li, was likely driven by weak continental chemical weathering coupled with strong reverse weathering on the seafloor underneath silica-rich oceans. The spatial pattern of δ7Li is also consistent with the development and then collapse of the meltwater plume that occurred at the time scale of cap dolostone accumulation. Therefore, the δ7Li data are consistent with the plumeworld hypothesis, considerably reduced chemical weathering on the continent during the Marinoan snowball Earth, and enhanced reverse weathering on the seafloor of Precambrian oceans.more » « less
An official website of the United States government
